
Optimal control of ratchets without spatial asymmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F413

(http://iopscience.iop.org/1751-8121/40/22/F01)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/22
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F413–F419 doi:10.1088/1751-8113/40/22/F01

FAST TRACK COMMUNICATION

Optimal control of ratchets without spatial asymmetry

Ricardo Chacón

Departamento de Fı́sica Aplicada, Escuela de Ingenierı́as Industriales, Universidad de
Extremadura, Apartado Postal 382, E-06071 Badajoz, Spain

Received 1 February 2007, in final form 18 April 2007
Published 14 May 2007
Online at stacks.iop.org/JPhysA/40/F413

Abstract
This work presents the following conjecture: to optimally enhance directed
transport by symmetry breaking of temporal forces there exists a particular
force waveform which allows us to deduce simple scaling laws from a
quantitative interpretation of Curie’s principle. These scaling laws explain
in a general setting previous results for a great diversity of systems subjected
to a standard biharmonic force and provide a quantitative criterion to optimize
the application of the ratchet effect induced by symmetry breaking of temporal
forces. Mathematical arguments justifying this conjecture are discussed.

PACS number: 05.60.−k

Understanding the ratchet effect [1–4] induced by symmetry breaking of temporal forces is
a fundamental issue that has remained unresolved for decades. While the dependence of
the directed transport on each of the ratchet-controlling parameters has been individually
investigated, there is still no general criterion to apply to the whole set of these parameters
to optimally control directed transport in general systems without a ratchet potential [5–
25]. Without regard for any specific physical context, let us consider a quite general system
described by a perturbed Hamiltonian and subjected to a T-periodic zero-mean ac force f (t)

where a ratchet effect is induced by solely violating temporal symmetries. A popular choice
would be the simple case of a biharmonic force, fh1,h2(t) = ε1 har1(ωt + ϕ1) + ε2 har2(2ωt +
ϕ2), where har1,2 represents indistinctly sin or cos. Clearly, the aforementioned symmetries are
solely the shift symmetry of the force (f (t) = −f (t +T/2), T ≡ 2π/ω) and the time-reversal
symmetry of the system’s dynamic equations. Of course, the breaking of the latter symmetry
implies the breaking of some time-reversal symmetry of the force (f (−t) = ±f (t)) in some
general case, but not in all cases [19]. The analysis of the breaking of these two fundamental
symmetries allows us to find the regions of the parameter space (ε1, ε2, ϕ1, ϕ2), ε1 + ε2 = const,
where the ratchet effect is optimal in the sense that the average of relevant observables (such as
velocity and current, hereafter referred to as 〈V 〉) is maximal, the remaining parameters being
held constant. In this paper, I conjecture that such regions are those where the effective degree
of symmetry breaking is maximal. The approach arises from the observation that Curie’s
principle [26] implies that a broken symmetry is a structurally stable situation [4]. At this
point, a quantitative measure of the degree of symmetry breaking (DSB) is introduced, on
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which the strength of directed transport must depend. This quantitative relationship between
cause (symmetry breaking) and effect (directed transport) is hereafter referred to as the DSB
mechanism. Also, this quantitative relationship is expected to exhibit a dependence on the
symmetry-breaking parameters which is general if and only if the symmetry breaking takes
place solely in the driving force, i.e., in the external agent which is simultaneously the
transport-inducing force and the ratchet-inducing force. Since the ratchet effect can occur at
any spatio-temporal scale, such a quantitative measure of the DSB must be independent of the
force’s amplitude and period. I consistently define the DSB of the symmetries of the force
f (t) by the expressions

Ds(f ) ≡
〈−f (t + T/2)

f (t)

〉
T

≡ 1

T

∫ T

0

−f (t + T/2)

f (t)
dt,

D+(f ) ≡
〈
f (−t)

f (t)

〉
T

≡ 1

T

∫ T

0

f (−t)

f (t)
dt,

D−(f ) ≡ −D+(f ),

(1)

where increasing deviation of Ds,+,−(f ) from 1 (unbroken symmetry, respectively) indicates
an increase in the DSB. But the effectiveness of any periodic zero-mean force at producing
transport diminishes as the transmitted impulse over a half-period is decreased while its
amplitude and period are held constant. In general, this means that optimal enhancement of
the ratchet effect is achieved when maximal effective (critical) symmetry breaking occurs,
which is in turn a consequence of two reshaping-induced competing effects: the increase of
the degree of breaking of the force’s symmetries and the decrease of the transmitted impulse
over a half-period, thus implying the existence of a particular force waveform which optimally
enhances the ratchet effect. Thus, for the biharmonic force

fcos,cos(t) = ε1 cos(ωt + ϕ1) + ε2 cos(2ωt + ϕ2),

equation (1) can be put into the form

Ds(fcos,cos) = 1 − a

π

∫ 2π

0

cos(2τ + ϕeff)

P (τ ; a, ϕeff)
dτ,

D+(fcos,cos) = −D−(fcos,cos) = 1 +
a

π

∫ 2π

0

sin(2τ) sin ϕeff

P(τ ; a, ϕeff)
dτ,

where a ≡ ε2/ε1, τ ≡ ωt + ϕ1, ϕeff ≡ ϕ2 − 2ϕ1, P (τ ; a, ϕeff) ≡ cos τ + a cos(2τ + ϕeff). The
quantity ϕeff is hereafter referred to as the effective phase. These integrals diverge at the zeros
of the quartic polynomial

4a2x4 + 4a cos ϕeffx
3 + (1 − 4a2)x2 − 2a cos ϕeffx + a2 cos2 ϕeff = 0,

where x ≡ cos τ . After solving this algebraic equation for x, one obtains that the three
integrals diverge when a � 1/2, ϕeff = {π/2, 3π/2}, and thus the DSB is maximal at these
parameter values for the three symmetries of the force (see figure 1(d)). For these values of
the effective phase, one finds that the transmitted impulse over a half-period is maximal at
a = 1/2 while the biharmonic force’s amplitude is held constant. This means that maximal
effective symmetry breaking occurs at a = 1/2, ϕeff = {π/2, 3π/2}. A similar analysis of
the remaining three versions of the biharmonic force yields the results summarized in table 1
(second column), which are again the same for the three symmetries in each case. Note that
one could equivalently define a measure of the DSB by taking the time average of the inverse
quantities −f (t)/f (t + T/2),±f (t)/f (−t): one finds that the corresponding measure (1)
exhibits the same qualitative behaviour as a function of the symmetry-breaking parameters,
and exactly the same optimal values of these parameters are found to yield a maximal effective
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Figure 1. (a) Elliptic force fellip(t) = εf (t; T , m, θ) ≡ εsn(�t + �; m)cn(�t + �; m) versus
t/T and three shape parameter values, m = 0 (light blue (light grey) line), m = 0.983 417
(dark blue (dark grey) line, optimal waveform), m = 1 − 10−6(light blue (light grey) line),
showing an increasing symmetry-breaking sequence as the pulse narrows, i.e., as m → 1.
(b) Optimal biharmonic force generating directed transport in one direction (f +

bihar(t)/ε =
sin(2πt/T ) + 1

2 sin(4πt/T ), dark blue (dark grey) line) and the opposite direction (f −
bihar(t)/ε =

sin(2πt/T ) − (1/2) sin(4πt/T ) ≡ −f +
bihar(t + T/2)/ε, red (mid grey) line). (c) Measure of the

DSB (equation (1)) for the elliptic force in (a), Ds(fellip) = E(m)K−1(m)(1 − m)−1/2 versus m.
One sees a sharp increase as m → 1. (d) Measure of the DSB (equation (1)) for the biharmonic
force fbihar(t)/ε = cos(2πt/T ) + a cos(4πt/T + ϕeff), Ds(fbihar) versus a for ϕeff = π/2. One
sees a sharp increase as a → 1/2, which is similar to that found in (c) for the elliptic function.

(This figure is in colour only in the electronic version)

Table 1. Optimal values of the relative amplitude ε2/ε1 and the effective phase ϕeff ≡ ϕ2 − 2ϕ1
obtained by computing the measure (1) of DSB for the three symmetries of the biharmonic force
(second column), change rules of the effective phase under time transformations (third and fourth
columns) and general scaling laws in leading order for averaged velocities and currents. Note the
coherence of the results in the second and fifth columns, which were obtained using independent
methods (recall that, without loss of generality, ε1 + ε2 = 1 so that ε2

1ε2 = (1 − ε2)
2ε2, which is a

function having a single maximum at ε2 = 1/3, and hence ε1 = 2/3, ε2/ε1 = 1/2).

har1, har2 Ds,+,− t → t + t0 t → −t + t0 〈V 〉
cos, cos ε2

ε1
= 1/2, ϕeff = { π

2 , 3π
2 } ϕ̃eff = ϕeff ϕ̃eff = −ϕeff ∼ε2

1ε2 sin ϕeff

sin, sin ε2
ε1

= 1/2, ϕeff = {0, π} ϕ̃eff = ϕeff ϕ̃eff = −ϕeff ± π ∼ε2
1ε2 cos ϕeff

sin, cos ε2
ε1

= 1/2, ϕeff = { π
2 , 3π

2 } ϕ̃eff = ϕeff ϕ̃eff = −ϕeff ∼ε2
1ε2 sin ϕeff

cos, sin ε2
ε1

= 1/2, ϕeff = {0, π} ϕ̃eff = ϕeff ϕ̃eff = −ϕeff ± π ∼ε2
1ε2 cos ϕeff

DSB. This indicates that (1) provides a bona fide measure of the DSB. Remarkably, such
optimal parameter values correspond to a single optimal waveform for the four versions of
the biharmonic force (see figure 1(b)). The DSB mechanism implies that such a waveform is
quite general, i.e., it corresponds to a force waveform which optimally enhances the ratchet
effect in general systems. Consider now the case of the elliptic force

fellip(t) = εf (t; T ,m, θ) ≡ εsn(�t + �;m)cn(�t + �;m),
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where cn(·;m) and sn(·;m) are Jacobian elliptic functions [27] of parameter m,� ≡
2K(m)/T ,� ≡ K(m)θ/π,K(m) is the complete elliptic integral of the first kind [27], T
is the period of the force and θ is the (normalized) initial phase (θ ∈ [0, 2π ]). Fixing ε, T and
θ , the force waveform changes as the shape parameter m varies from 0 to 1 (see figure 1(a)).
In this case, equation (1) yields

Ds(fellip) = E(m)

K(m)
√

1 − m
,

where E(m) is the complete elliptic integral of the second kind [27] (see figure 1(c)).
Physically, the motivation for this choice is that fellip(t; T ,m = 0, θ) = ε sin(2πt/T + θ)/2
and that fellip(t; T ,m = 1, θ) vanishes, i.e., in these two limits directed transport is not
possible, while it is expected for 0 < m < 1. Thus, one may expect in general the average
of any relevant observable 〈V 〉 to exhibit an extremum at a certain critical value m = mc as
the shape parameter m is varied, the remaining parameters being held constant. The DSB
mechanism implies that such a value mc is quite general, i.e., it corresponds to a particular
force waveform which optimally enhances the ratchet effect in general systems. Generality
requires that such an optimal waveform should be closely related to that deduced for the case
of a biharmonic force, in the sense of its Fourier series. Indeed, using

fellip(t; T ,m, θ)/ε =
∞∑

n=1

an(m) sin

[
n

(
2πt

T
+ θ

)]
,

an(m) ≡ nπ2

mK2(m)
sech

[
nπK(1 − m)

K(m)

]
one could expect the critical value mc to be near m = 0.983 417 since

fellip(t; T ,m = 0.983 417, θ)

εa1(m = 0.983 417)
= sin

(
2πt

T
+ θ

)

+
1

2
sin

(
4πt

T
+ 2θ

)
+ 0.178 592 sin

(
6πt

T
+ 3θ

)
+ · · · ,

i.e., the optimal values (ε2/ε1 = 1/2, ϕeff = 0) for the biharmonic approximation of the
elliptic function are recovered at m = 0.983 417 (cf table 1, second column, and compare
figures 1(a) and (b)). Numerical studies of diverse systems [28] confirmed the accuracy of the
critical value mc = 0.983 . . . , i.e., the effectiveness of the optimal waveform. Similarly, from
the Fourier series of a sawtooth-wave force

fsawtooth(t, T ) = 2ε

[
sin

(
2πt

T

)
− 1

2
sin

(
4πt

T

)
+

1

3
sin

(
6πt

T

)
− · · ·

]
,

one recovers the optimal values (ε2/ε1 = 1/2, ϕeff = π) for its biharmonic approximation (cf
table 1, second column), which explains the great effectiveness of this waveform in controlling
directed transport of magnetic flux quanta [23].

Next, one exploits the aforementioned generality expected from the DSB mechanism to
deduce the dependence of 〈V 〉 on the symmetry-breaking parameters (ε1, ε2, ϕ1, ϕ2) of the
biharmonic force fh1,h2(t) in leading order for the usual case [5–22, 24, 25] of small amplitudes
(1/ε1,2 → ∞) when directed transport effectively occurs (note that, depending upon the
particular system under study, the ratchet effect can yield steady transport or induced dipoles
[22]). For the sake of clarity, first consider the case where the violation of the time-reversal
symmetry of the system’s dynamic equations can be absorbed in the temporal force because
dissipation is negligible and the Lagrangian (Hamiltonian) of the system does not contain any
additional term explicitly breaking the time-reversal symmetry. This means that the breaking
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of the time-reversal symmetry implies the breaking of the force’s symmetry f (−t) = f (t).
According to the above arguments, one generally expects 〈V 〉 ∼ s(ε1, ε2, ϕ1, ϕ2), where it
is assumed without loss of generality that the function s is k-times piecewise continuously
differentiable. From MacLaurin’s series, one has

s(ε1, ε2, ϕ1, ϕ2) =
∞∑

k=0

∞∑
n=0

ck,n(ϕ1, ϕ2)ε
k
1ε

n
2

with ck,0 = c0,n = 0 since the shift symmetry is never broken in the case of a single harmonic
function. The transformation εi → −εi, i = 1, 2, implies fh1,h2(t) → −fh1,h2(t), and hence
〈V 〉 → −〈V 〉. This means that s(ε1, ε2, ϕ1, ϕ2) → −s(−ε1,−ε2, ϕ1, ϕ2) and hence k + n =
2m + 1,m = 1, 2, . . . . Thus, one obtains

s(ε1, ε2, ϕ1, ϕ2) = c1,2(ϕ1, ϕ2)ε1ε
2
2 + c2,1(ϕ1, ϕ2)ε

2
1ε2 + O

(
ε2

1ε
3
2 , ε

3
1ε

2
2 , ε

1
1ε

4
2 , ε

4
1ε

1
2

)
, (2)

for ε1,2 sufficiently small. Since the ratchet effect does not depend on the time origin, 〈V 〉
must remain invariant under the transformation t → t + t0,∀t0. This transformation yields
fh1,h2(t) → ε1 har1(ωt + ϕ̃1) + ε2 har2(2ωt + ϕ̃2), with the fundamental property ϕ̃2 − 2ϕ̃1 =
ϕ2 − 2ϕ1, i.e., the effective phase ϕeff remains invariant under time translation (see table 1,
third column), and hence

〈V 〉 ∼ c1,2(ϕeff)ε1ε
2
2 + c2,1(ϕeff)ε

2
1ε2. (3)

The transformation ϕi → ϕi − π, i = 1, 2, implies fh1,h2(t) → −fh1,h2(t), and hence
〈V 〉 → −〈V 〉 whereby c1,2(ϕeff) = −c1,2(ϕeff + π), c2,1(ϕeff) = −c2,1(ϕeff + π), while the
transformation ε1 → −ε1, ϕ1 → ϕ1 − π maintains 〈V 〉 invariant, and hence c1,2(ϕeff) =
−c1,2(ϕeff + 2π), c2,1(ϕeff) = c2,1(ϕeff + 2π). The comparison of these four relationships
for the functions of the effective phase implies that c2,1(ϕeff) is a 2π -periodic function while
c1,2(ϕeff) ≡ 0. Thus, equation (3) reduces to

〈V 〉 ∼ (1/ε1)
−2(1/ε2)

−1c2,1(ϕeff), (4)

where a power law for the dependence on the amplitudes is now explicit. In this regard, it is
worth noting the great similarity between the present theory and the highly optimized tolerance
(HOT) theory [29] where a power law is generated by the actions of an external agent aiming
to optimize the behaviour of a system. However, we have seen above that generality comes
from criticality in the present theory, while for HOT systems the details matter. To obtain an
explicit expression for the function c(ϕeff) it is useful to consider the general transformation
t → −t + t0,∀t0. This transformation yields fh1,h2(t) → ε1 har1(ωt + ϕ̃1) + ε2 har2(2ωt + ϕ̃2)

where the effective phase is no longer strictly invariant but changes according to table 1 (fourth
column). Since the transformation t → −t implies 〈V 〉 → −〈V 〉 when the time-reversal
symmetry is unbroken, the change rules of the effective phase imply that the function c2,1(ϕeff)

has necessarily a definite parity (cf equation (4) and table 1, fourth column). Taking into
account this property and given that c2,1(ϕeff) is assumed to be k-times piecewise continuously
differentiable, its Fourier series [30] can be approximated to leading non-trivial order by a
single harmonic function according to table 1 (fifth column). One sees that the general scaling
laws in table 1 (fifth column) yield 〈V 〉 = 0 when and only when both the shift symmetry
and the time-reversal symmetry of the system’s dynamic equations (i.e., the force’s symmetry
f (−t) = f (t) in the present case) are unbroken, while they yield a maximum value of 〈V 〉
when and only when maximal effective (critical) symmetry breaking occurs in the sense of
the measure (1), as predicted from the DSB mechanism. Also, that the harmonic functions
appearing in the scaling laws are independent of har1 is a consequence of the invariance of
〈V 〉 under time translation. As expected, one finds that such scaling laws are quite general,
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i.e., they confirm and explain previous results for a great diversity of systems [7, 14, 15, 22,
25] subjected to a biharmonic force fh1,h2(t).

I now discuss how the aforementioned scaling laws change when the violation of the
time-reversal symmetry of the system’s dynamic equations cannot be absorbed in the temporal
force. This is the case when dissipation [5, 6, 8–13, 16–21, 24] is not negligible. The
approximate conservation of the effective phase in the sense of the change rules in table 1
(fourth column) has been demonstrated above, and hence that ϕeff is the proper argument of
the function c2,1(ϕ1, ϕ2), when the violation of the time-reversal symmetry only occurs in the
temporal force. Therefore, that the violation of such a symmetry is also due to the presence of
dissipation means that ϕeff can no longer be an argument of the function c2,1(ϕ1, ϕ2) but one
has ϕeff +ϕdiss instead, where ϕdiss is hereafter referred to as the dissipation phase. Note that the
additive character of the dissipation phase is a consequence of the DSB mechanism. Thus, the
dissipation phase quantifies the degree of breaking of the time-reversal symmetry generated
by dissipation. Also, the DSB mechanism implies the general properties: ϕdiss(β = 0) = 0
and that ϕdiss(β) is a monotonically increasing function of β, with β being the effective
dissipation parameter. For the values of ϕeff yielding 〈V 〉 = 0 in the absence of dissipation,
i.e., those values for which the temporal force does not break the time-reversal symmetry
of a non-dissipative system, one obtains that the maximum absolute value (i.e., 1) of the
harmonic functions appearing in the scaling laws is reached at ϕdiss = ±π/2, and hence
we have the additional general property maxβ ϕdiss(β) = π/2 (cf table 1, fifth column).
However, the function ϕdiss(β) generally depends upon additional parameters, such as the
period and diverse system-dependent parameters. Of course, it is generally expected that the
function〈V 〉/har(ϕeff + ϕdiss) should exhibit monotonically decreasing behaviour as a function
of β, where har is the corresponding harmonic function in table 1 (fifth column) in each
case. When dissipative forces dominate inertia (the so-called overdamped regime [1, 4]),
the breaking of the time-reversal symmetry implies the breaking of the force’s symmetry
f (−t) = −f (t) and the dissipative phase reaches its limiting values ϕdiss = ±π/2. Since
the optimal values of the relative amplitude ε2/ε1 and the effective phase ϕeff are just the
same for the three symmetries of the biharmonic force, this means that the general scaling
laws corresponding to the overdamped regime are those given in table 1 (fifth column) but
with sin instead of cos, and vice versa, in each case. One finds that these predictions are
in perfect agreement with published results for a great diversity of systems [4–6, 8–13, 16–
21, 24] subjected to a biharmonic force fh1,h2(t). Since dissipative forces and randomly
fluctuating forces (noise) have the same microscopic origin, the effectiveness of temporal
forces at generating directed transport induced by the ratchet effect is expected to be robust
against moderate presence of noise.

In summary, the present work establishes that to optimally enhance directed transport by
symmetry breaking of temporal forces there exists a particular force waveform which allows
to deduce simple scaling laws from a quantitative interpretation of Curie’s principle. This
conjecture explains in a general setting all previously published results for a great diversity
of systems [5–25] and provides for the first time a quantitative criterion to optimize any
application of the ratchet effect induced by symmetry breaking of temporal forces. The scope
and validity of such a conjecture should be matters of further research, and the author would
welcome insights from his colleagues.
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